Warning: package 'ggplot2' was built under R version 4.2.3
library(here)
here() starts at C:/Users/vjpan/Desktop/MADA/MADA2023/vijaypanthayi-MADA-portfolio
#Load dslabs packagelibrary("dslabs")#Look at help file for gapminder datahelp(gapminder)
starting httpd help server ...
done
#Get an overview of data structurestr(gapminder)
'data.frame': 10545 obs. of 9 variables:
$ country : Factor w/ 185 levels "Albania","Algeria",..: 1 2 3 4 5 6 7 8 9 10 ...
$ year : int 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 ...
$ infant_mortality: num 115.4 148.2 208 NA 59.9 ...
$ life_expectancy : num 62.9 47.5 36 63 65.4 ...
$ fertility : num 6.19 7.65 7.32 4.43 3.11 4.55 4.82 3.45 2.7 5.57 ...
$ population : num 1636054 11124892 5270844 54681 20619075 ...
$ gdp : num NA 1.38e+10 NA NA 1.08e+11 ...
$ continent : Factor w/ 5 levels "Africa","Americas",..: 4 1 1 2 2 3 2 5 4 3 ...
$ region : Factor w/ 22 levels "Australia and New Zealand",..: 19 11 10 2 15 21 2 1 22 21 ...
#Get a summary of datasummary(gapminder)
country year infant_mortality life_expectancy
Albania : 57 Min. :1960 Min. : 1.50 Min. :13.20
Algeria : 57 1st Qu.:1974 1st Qu.: 16.00 1st Qu.:57.50
Angola : 57 Median :1988 Median : 41.50 Median :67.54
Antigua and Barbuda: 57 Mean :1988 Mean : 55.31 Mean :64.81
Argentina : 57 3rd Qu.:2002 3rd Qu.: 85.10 3rd Qu.:73.00
Armenia : 57 Max. :2016 Max. :276.90 Max. :83.90
(Other) :10203 NA's :1453
fertility population gdp continent
Min. :0.840 Min. :3.124e+04 Min. :4.040e+07 Africa :2907
1st Qu.:2.200 1st Qu.:1.333e+06 1st Qu.:1.846e+09 Americas:2052
Median :3.750 Median :5.009e+06 Median :7.794e+09 Asia :2679
Mean :4.084 Mean :2.701e+07 Mean :1.480e+11 Europe :2223
3rd Qu.:6.000 3rd Qu.:1.523e+07 3rd Qu.:5.540e+10 Oceania : 684
Max. :9.220 Max. :1.376e+09 Max. :1.174e+13
NA's :187 NA's :185 NA's :2972
region
Western Asia :1026
Eastern Africa : 912
Western Africa : 912
Caribbean : 741
South America : 684
Southern Europe: 684
(Other) :5586
#Determine the type of object gapminder isclass(gapminder)
[1] "data.frame"
#Assign only countries in Africa to variable "africadata"africadata <-subset(gapminder, continent =="Africa")#Run the str function on the africadata datasetstr(africadata)
'data.frame': 2907 obs. of 9 variables:
$ country : Factor w/ 185 levels "Albania","Algeria",..: 2 3 18 22 26 27 29 31 32 33 ...
$ year : int 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 ...
$ infant_mortality: num 148 208 187 116 161 ...
$ life_expectancy : num 47.5 36 38.3 50.3 35.2 ...
$ fertility : num 7.65 7.32 6.28 6.62 6.29 6.95 5.65 6.89 5.84 6.25 ...
$ population : num 11124892 5270844 2431620 524029 4829291 ...
$ gdp : num 1.38e+10 NA 6.22e+08 1.24e+08 5.97e+08 ...
$ continent : Factor w/ 5 levels "Africa","Americas",..: 1 1 1 1 1 1 1 1 1 1 ...
$ region : Factor w/ 22 levels "Australia and New Zealand",..: 11 10 20 17 20 5 10 20 10 10 ...
#Run the summary function on the africadata datasetsummary(africadata)
country year infant_mortality life_expectancy
Algeria : 57 Min. :1960 Min. : 11.40 Min. :13.20
Angola : 57 1st Qu.:1974 1st Qu.: 62.20 1st Qu.:48.23
Benin : 57 Median :1988 Median : 93.40 Median :53.98
Botswana : 57 Mean :1988 Mean : 95.12 Mean :54.38
Burkina Faso: 57 3rd Qu.:2002 3rd Qu.:124.70 3rd Qu.:60.10
Burundi : 57 Max. :2016 Max. :237.40 Max. :77.60
(Other) :2565 NA's :226
fertility population gdp continent
Min. :1.500 Min. : 41538 Min. :4.659e+07 Africa :2907
1st Qu.:5.160 1st Qu.: 1605232 1st Qu.:8.373e+08 Americas: 0
Median :6.160 Median : 5570982 Median :2.448e+09 Asia : 0
Mean :5.851 Mean : 12235961 Mean :9.346e+09 Europe : 0
3rd Qu.:6.860 3rd Qu.: 13888152 3rd Qu.:6.552e+09 Oceania : 0
Max. :8.450 Max. :182201962 Max. :1.935e+11
NA's :51 NA's :51 NA's :637
region
Eastern Africa :912
Western Africa :912
Middle Africa :456
Northern Africa :342
Southern Africa :285
Australia and New Zealand: 0
(Other) : 0
#Create a variable from africadata including only infant mortality and life expectancyafricadata_mort_life <- africadata[ , c("infant_mortality","life_expectancy")]#Create a variable from africadata including only population size and life expectancyafricadata_pop_life <- africadata[ , c("population","life_expectancy")]#Run the str function on the africadata_mort_life variablestr(africadata_mort_life)
'data.frame': 2907 obs. of 2 variables:
$ infant_mortality: num 148 208 187 116 161 ...
$ life_expectancy : num 47.5 36 38.3 50.3 35.2 ...
#Run the summary function on the africa_mort_life variablesummary(africadata_mort_life)
infant_mortality life_expectancy
Min. : 11.40 Min. :13.20
1st Qu.: 62.20 1st Qu.:48.23
Median : 93.40 Median :53.98
Mean : 95.12 Mean :54.38
3rd Qu.:124.70 3rd Qu.:60.10
Max. :237.40 Max. :77.60
NA's :226
#Run the str function on the africadata_pop_life variablestr(africadata_pop_life)
'data.frame': 2907 obs. of 2 variables:
$ population : num 11124892 5270844 2431620 524029 4829291 ...
$ life_expectancy: num 47.5 36 38.3 50.3 35.2 ...
#Run the summary function on the africadata_pop_life variablesummary(africadata_pop_life)
population life_expectancy
Min. : 41538 Min. :13.20
1st Qu.: 1605232 1st Qu.:48.23
Median : 5570982 Median :53.98
Mean : 12235961 Mean :54.38
3rd Qu.: 13888152 3rd Qu.:60.10
Max. :182201962 Max. :77.60
NA's :51
#Create a plot of life expectancy as a function of infant mortality (plot data as points)ggplot(data=africadata_mort_life, aes(x=infant_mortality, y=life_expectancy)) +geom_point(size=2, shape=23)
#Create a plot of population size (log) as a function of infant mortality (plot data as points)ggplot(data=africadata_pop_life,aes(x=population, y=life_expectancy)) +geom_point(size=2, shape=23)+scale_x_log10("population")
#Determine which years in the dataset have missing valuesafricadata_filtered <- africadata[is.na(africadata$infant_mortality),]africadata_missing <-unique(africadata_filtered$year)print(africadata_missing)
#Create a new variable with the data from africadata only including the year 2000africadata_y2000 <-subset(africadata, year ==2000)#Run the str function on the africadata_y2000 variablestr(africadata_y2000)
'data.frame': 51 obs. of 9 variables:
$ country : Factor w/ 185 levels "Albania","Algeria",..: 2 3 18 22 26 27 29 31 32 33 ...
$ year : int 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 ...
$ infant_mortality: num 33.9 128.3 89.3 52.4 96.2 ...
$ life_expectancy : num 73.3 52.3 57.2 47.6 52.6 46.7 54.3 68.4 45.3 51.5 ...
$ fertility : num 2.51 6.84 5.98 3.41 6.59 7.06 5.62 3.7 5.45 7.35 ...
$ population : num 31183658 15058638 6949366 1736579 11607944 ...
$ gdp : num 5.48e+10 9.13e+09 2.25e+09 5.63e+09 2.61e+09 ...
$ continent : Factor w/ 5 levels "Africa","Americas",..: 1 1 1 1 1 1 1 1 1 1 ...
$ region : Factor w/ 22 levels "Australia and New Zealand",..: 11 10 20 17 20 5 10 20 10 10 ...
#Run the summary function on the africadata_y2000 variablesummary(africadata_y2000)
country year infant_mortality life_expectancy
Algeria : 1 Min. :2000 Min. : 12.30 Min. :37.60
Angola : 1 1st Qu.:2000 1st Qu.: 60.80 1st Qu.:51.75
Benin : 1 Median :2000 Median : 80.30 Median :54.30
Botswana : 1 Mean :2000 Mean : 78.93 Mean :56.36
Burkina Faso: 1 3rd Qu.:2000 3rd Qu.:103.30 3rd Qu.:60.00
Burundi : 1 Max. :2000 Max. :143.30 Max. :75.00
(Other) :45
fertility population gdp continent
Min. :1.990 Min. : 81154 Min. :2.019e+08 Africa :51
1st Qu.:4.150 1st Qu.: 2304687 1st Qu.:1.274e+09 Americas: 0
Median :5.550 Median : 8799165 Median :3.238e+09 Asia : 0
Mean :5.156 Mean : 15659800 Mean :1.155e+10 Europe : 0
3rd Qu.:5.960 3rd Qu.: 17391242 3rd Qu.:8.654e+09 Oceania : 0
Max. :7.730 Max. :122876723 Max. :1.329e+11
region
Eastern Africa :16
Western Africa :16
Middle Africa : 8
Northern Africa : 6
Southern Africa : 5
Australia and New Zealand: 0
(Other) : 0
#Create a plot of life expectancy as a function of infant mortality (plot data as points) for the year 2000ggplot(data=africadata_y2000, aes(x=infant_mortality, y=life_expectancy)) +geom_point(size=2, shape=23)
#Create a plot of population size (log) as a function of infant mortality (plot data as points) for the year 2000ggplot(data=africadata_y2000,aes(x=population, y=life_expectancy)) +geom_point(size=2, shape=23)+scale_x_log10("population")
#Create a simple fit by setting life expectancy as the outcome and infant mortality as the predictory (using data from 2000 only)fit1 <-lm(life_expectancy~infant_mortality, data=africadata_y2000)summary(fit1)
Call:
lm(formula = life_expectancy ~ infant_mortality, data = africadata_y2000)
Residuals:
Min 1Q Median 3Q Max
-22.6651 -3.7087 0.9914 4.0408 8.6817
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 71.29331 2.42611 29.386 < 2e-16 ***
infant_mortality -0.18916 0.02869 -6.594 2.83e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.221 on 49 degrees of freedom
Multiple R-squared: 0.4701, Adjusted R-squared: 0.4593
F-statistic: 43.48 on 1 and 49 DF, p-value: 2.826e-08
#Create a simple fit by setting population as the outcome and infant mortality as the predictor (using data from 2000 only)fit2 <-lm(population~infant_mortality, data=africadata_y2000)summary(fit2)
Call:
lm(formula = population ~ infant_mortality, data = africadata_y2000)
Residuals:
Min 1Q Median 3Q Max
-16307667 -12769228 -7828854 733380 105710100
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12063474 8682734 1.389 0.171
infant_mortality 45564 102671 0.444 0.659
Residual standard error: 22260000 on 49 degrees of freedom
Multiple R-squared: 0.004003, Adjusted R-squared: -0.01632
F-statistic: 0.1969 on 1 and 49 DF, p-value: 0.6592
#Based on the results from the fits, it appears that infant mortality is not a good predictor of either population or life expectancy
The following added by SETH LATTNER
Based on the p-value (p=2.83e-08), I would actually conclude that infant mortality is actually a significant predictor of life expectancy.
More plotting
I want to do a little more plotting with the gapminder data for fun.
library(tidyverse)
Warning: package 'tidyverse' was built under R version 4.2.3
Warning: package 'tibble' was built under R version 4.2.3
Warning: package 'tidyr' was built under R version 4.2.3
Warning: package 'readr' was built under R version 4.2.3
Warning: package 'purrr' was built under R version 4.2.3
Warning: package 'dplyr' was built under R version 4.2.3
Warning: package 'stringr' was built under R version 4.2.3
Warning: package 'forcats' was built under R version 4.2.3
Warning: package 'lubridate' was built under R version 4.2.3
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.1 ✔ readr 2.1.4
✔ forcats 1.0.0 ✔ stringr 1.5.0
✔ lubridate 1.9.2 ✔ tibble 3.2.1
✔ purrr 1.0.1 ✔ tidyr 1.3.0
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#calculate per capita GDPgdp_per_cap<-africadata$gdp/africadata$populationsummary(gdp_per_cap)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
54.89 247.40 407.06 903.87 846.16 8527.47 637
#plot fertility vs per capita GDP for each region of Africaggplot(africadata, aes(gdp_per_cap, fertility, color=region))+geom_point(cex=2, alpha=0.3)+xlab("Per Capita GDP")+ylab("Fertility")+theme_classic()
#Based on these results, GDP is a significant predictor of fertility for each region#of Africa. Obviously, there are many factors that would influence this, but this is#still an informative parameter.